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We investigate the intermolecular-interaction and damping (among exciton states) effects on the polarizabilities
(R) for molecular aggregates with different sizes of planar dendritic, i.e., Bethe-lattice (or Cayley-tree), structures
by elucidating the spatial contribution of one-exciton generation toR. The molecular aggregate is treated in
the one-exciton model, including the dipole-dipole interaction. The off-resonantR of the molecular aggregate
is calculated by the numerical Liouville approach, including the damping effects. The signs of the contribution
of intermolecular-interaction (positive) and damping (negative) effects toR are found to be opposite with
each other. The magnitude of these effects onR indicates a nonlinear enhancement as the number of monomers
increases. These effects onR for the fractal-structured dendritic aggregates are also found to provide distinct
spatial contributions for different generations of the dendritic structure in contrast to the case of a non-fractal-
structured dendritic aggregate.

1. Introduction

Recently, dendrimeric supramolecules with fractal antenna
structures have attracted a great deal of attention because of
their remarkable light-harvesting ability.1-12 These molecular
systems have a large number of terminal groups originating in
a focal point (core) with at least one branch at each repeat unit.
It is predicted that there is an efficient directional energy transfer
from the periphery to the core. Such excitation energy cascades
to the core are known to be caused by the exciton migration in
the fractal antenna structure, which provides ordered energy
states. On the other hand, molecular aggregate systems with
dendritic structures are also known to exhibit similar ordered
energy states and directional energy transfer.13 Although the
first-order optical processes, i.e., absorption and emission of
light, for these systems have been investigated actively, the
optical response processes, e.g., (hyper)polarization, have not
been elucidated well. In this study, therefore, we focus on the
features of polarizabilitiesR for several sizes of dendritic
molecular aggregates (with planar structures), in which mono-
mers (chromophores) are assumed to be dipole units (two-state
molecular models coupled with each other by dipole-dipole
interaction) arranged as modeled after the Bethe-lattice (or
Cayley-tree) type structures.10-12 These dendritic aggregate
models are modeled after phenylacetylene dendrimers, and the
decoupling ofπ-conjugation at branching points (benzene rings)
are realized by increasing intermolecular distance between
neighboring units through branching points. As mentioned
above, these aggregate models can reproduce some primary
features (multistep exciton states and decoupling at branching
points) of exciton states for dendrimers. On the other hand,
because the effects of the dipole-dipole interaction are weaker
than those of theπ-electronic conjugation, the size dependences
of R for dendritic aggregates are predicted to be fairly smaller
than those for dendrimers. However, the size dependency of

the intermolecular-interaction effects in dendritic aggregates and
their spatial contribution toR is expected to more clearly reflect
the effects of the fractal structure. Considering the intensity of
the π conjugation in dendrimers, similar features are expected
to be observed more remarkably inR for dendrimers.

We use a conventional one-exciton molecular aggregate
model constructed from chromophore dipole units, which are
coupled with each other by the dipole-dipole interaction. The
energy states and transition moments for the model aggregate
are calculated by diagonalizing the model Hamiltonian matrix.
Using this aggregate-state model, the time evolution of the
density matrix is calculated in a numerically exact manner, i.e.,
numerical Liouville approach (NLA).14 Because it is recently
pointed out that the damping effects in exciton states are
important for the exciton migration from the periphery to the
core of these dendritic systems,15 we here examine two cases
of models with and without damping terms. TheR values in
the off-resonant region are calculated using our definition of
nonperturbativeR. The nonperturbative approach has an ad-
vantage of easily treating such damping effects originating in
exciton-phonon coupling. Furthermore, under the (near)
resonant condition, the nonperturbative approach is essential for
treating response properties. As mentioned above, the exciton
migration dynamics under the (near)resonant condition are a
recent topical subject, so that we present our nonperturbative
approach, which is applicable to the calculation ofR both in
off- and on-resonant regions, though this approach is not
necessary for the present case with weak off-resonant fields.
To elucidate the feature ofR, we develop a visualization method
of the spatial contribution of virtual one-exciton generation to
R. Using this plot, we investigate the intermolecular-interaction
and damping effects on the spatial contribution of one-exciton
generation toR for different-size dendritic aggregates and
elucidate the structure-property relation inR of dendritic
systems with a fractal-dimensional structure.
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2. Methodology

2.1. Model Hamiltonian of Molecular Aggregates.We
consider dendritic molecular aggregates (Figure 1) composed
of two-state monomers (chromophores). Thekth monomer
possesses a transition energy,E21

k (≡ E2
k - E1

k), and a transi-
tion moment,µ12

k . The monomer is approximated to be a
dipole. This approximation is considered to be acceptable if the
intermolecular distance (Rkl) is larger than the size of a
monomer. For two dipolesk and l, the angle between a dipole
k(l) and a line drawn from the dipole sitek to l is θkl(θlk). The
Hamiltonian for the aggregate model is written by

where the first and the second terms represent a noninteracting
Hamiltonian and a dipole-dipole interaction.N represents the
number of dipole units.Eik

k is an energy of the stateik for
monomerk, and µiki′k

k is a magnitude of a transition matrix
element between statesik and i′k for monomerk. The aik

+ and
aik represent respectively the creation and annihilation operators
for the ik state of monomerk. The matrix elements ofHagg in
the basis for the aggregate{|æi1

1 æi2

2‚‚‚æiN

N〉} (N is the number of
monomers), which is constructed from a direct product of a
state vector for each monomer{|æik

k〉}, are presented in our
previous paper.13 By diagonalizing the Hamiltonian matrixH
(eq 1), we can obtain eigenenergies{El

agg} and eigenstates
{|ψl

agg〉} (l ) 1,...,M), whereM is the size of the basis used.M

is N + 1 in the present study because we consider a one-exciton
model. The transition dipole matrix element (µll ′

agg) in the
direction of applied field for this new state model is also
calculated.13 It is noted that the transition moments between
the ground and one-exciton states, and those between one- and
two-exciton states, only exist in the present model.

2.2. Density Matrix Formalism for Molecular Aggregate
under Time-Dependent Electric Field.We here briefly explain
our nonperturbative calculation approach, i.e., NLA.14 The time
evolution of a molecular aggregate model is described by the
following density matrix formalism:14

whereF(t) indicates the total molecular density matrix and the
second term on the right-hand side of eq 2 represents the
damping processes in the Markoff approximation. The total
Hamiltonian H(t) is expressed by the sum of the aggregate
Hamiltonian,Hagg, and aggregate-field interaction,V(t)

where F is an external field amplitude in the direction ofx
because the incident field is assumed to be a plane wave with
frequencyω and wave vectork travelling perpendicular to the
molecular plane and the polarization vector is parallel to thex
axis. bl

+ and bl represent respectively the creation and an-

Figure 1. Structures of dendritic molecular aggregates (D4, D10, D25, D58, and D127) which mimic skeletons of phenylacetylene dendrimers.10-12

N represents the number of monomers. Each two-state monomer dipole unit (with transition energyE21 ) 38 000 cm-1 and transition momentµ21

) 10D) is represented by an arrow. The intermolecular distance in linear legs and the angle between neighboring linear legs at all branching-points
are assumed to be 15 au and 120°, respectively.
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nihilation operators for thel state of the aggregate state model
obtained in section 2.1. The matrix representation of eq 2 is
expressed as

whereVll ′(t) ) -µll ′
agg(F cosωt).

The damping term-(ΓF(t))ll ′ in eq 4 can be considered as
the following two types of mechanisms:14

and

Equations 5 and 6 describe the population and coherent-damping
mechanisms, respectively.γll ′(*γl′l) represents a feeding pa-
rameter. The off-diagonal damping parameter is expressed as

and

whereΓ′ij is the pure dephasing factor. In this study, because
we assume a closed system, the factorγll ′ is related to the decay
rate as

We perform a numerically exact calculation to solve eq 4 by
the fourth-order Runge-Kutta method. The density matrix
representation in the aggregate basis{|æi1

1 æi2

2‚‚‚æiN

N〉} at time t
is calculated by

whereFll ′(t) is calculated by eq 4. Using this density matrix,
the polarizationF(t) is calculated by

Here, the transition matrix elementµi1,i2,...iN;i′1,i′2,...i′N
is represented

by

whereµ′lili ′l
represents a transition dipole matrix element (in the

direction of polarization vector of applied field) betweenil and
i′l of monomerl.

2.3. Calculation Method of Polarizability and Its Partition
into the Exciton Generation.We briefly explain our calculation
method ofR in the NLA.14 The polarizationp(t) is transformed
to p(ω) in the frequency domain by using the discrete Fourier
transformation. Using the external field amplitudeε(ω) () F/2)
and the polarizationp(ω), the nonperturbativeR(-ω;ω)
(≡ Rxx(-ω;ω)) for a molecular aggregate is calculated by

For weak fields, this quantity coincides with the conventional
perturbative R(-ω;ω). Although in the present case the
intensity-dependent phenomena14 described by eq 13 seem not
to be observed, we apply this nonperturbative approach to the
calculation and analysis ofR because of its advantages
mentioned in section 1. From eqs 11 and 13, theR(-ω;ω) is
also expressed as

where a and b indicate the aggregate basis{|æi1

1‚‚‚æiN

N〉} and
Fba

real(ω) is a Fourier component of the real part of density
matrix element (Fba

real(t)) in the aggregate basis. Equation 14
indicates that the totalR can be partitioned into the virtual
excitation contribution (Ra-b) between basesa and b. In the
one-exciton case, eithera or b is |11...1〉 (1. the ground state of
monomer), so that we can elucidate the spatial contribution of
one-exciton generation toR by showing the one-exciton
distribution, e.g.,|121...1〉 (2. the excited state of monomer).

3. Results and Discussion

3.1. One-Exciton States and Their Spatial Contribution
to r of Dendritic Aggregate Models.The dendritic molecular
aggregate models (D4, D10, D25, D58, and D127) shown in
Figure 1 involve all of the same dipole units. The transition
energy and transition moment of the dipole unit (monomer) are
assumed to be 38 000 cm-1 and 10 D, respectively. It is noted
that the magnitude of these parameters does not affect the
qualitative results for the relative size dependency of intermo-
lecular-interaction and damping effects onR and their spatial
contributions toR. These aggregate models possess slight
intermolecular interactions between adjacent legs at the branch-
ing points because their intermolecular distance (15x3 a.u.) is
larger than that (15 au) in the same leg regions. It is noted that
such considerable decreases in the intermolecular interactions
at the branching points are similar to the situation in real
phenylacetylene dendrimers, in which the meta-branching points
destroy theπ-electronic conjugation between adjacent linear
legs.12 The one-exciton statesl (l ) 2,...,M) and the magnitude
of transition moments between the ground and the one-exciton
states for these aggregate models are shown in Figure 2. There
are found to be explicit multistep energy states (with significant
transition moments) for these dendritic aggregates (except for
a small dendritic aggregate (D4)) in contrast to the case of linear
aggregates which possess almost only a one-exciton energy state
with a significant transition moment.12,13 It is also found that
the number of such multistep energy states and the energy width
of their distribution increase with the increase in the dendritic-
aggregate size, corresponding to the number of generations

F̆ll ′(t) ) -i(1 - δll ′)Ell ′
aggFll ′(t) - i∑
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M

(Vlm(t)Fml′(t) -

Flm(t)Vml′(t)) - (ΓF(t))ll ′ (4)

-(ΓF(t))ll ) -ΓllFll(t) + ∑
m*l

M

γmlFmm(t) (5)

-(ΓF(t))ll ′ ) -Γll ′Fll ′(t) (6)

Γll ′ ) 1
2
(Γll + Γl′l′) + Γ′ll ′ (7)

Γll ′ ) Γl′l (8)

Γii ) ∑
l*i

M

γil (9)

Fi1,i2,...,iN;i′1,i′2,...,i′N
(t) ) ∑

l,l′)1

M

〈æj1

1‚‚‚æjN

N|ψl
agg〉 Fll ′(t) 〈ψl′

agg|æj
1

′i
‚‚‚æj

N
′N
〉

(10)

p(t) ) ∑
i1,i 2,...,iN,
i′1,i ′2,...,i′N

M

µi1,i2,...iN;i′1,i ′2,...i′N
Fi′1,i ′2,...,i′N;i1,i2,...,iN

(t) (11)

µi1,i2,...iN;i′1,i ′2,...i′N
) 〈æi1

1‚‚‚æiN

N|∑
l)1

N

µ′l|æi′1
1‚‚‚æi′N

N〉 )

∑
l)1

N

µ′lili′l
(∏

n*l

N

δini′n
) (12)

R(-ω;ω) )
p(ω)

ε(ω)
(13)

R(-ω;ω) ) ∑
a>b

M

Ra-b ) ∑
a>b

M 2µabFba
real(ω)

ε(ω)
(14)

Polarizabilities of Dendritic Molecular Aggregates J. Phys. Chem. A, Vol. 105, No. 22, 20015475



involved in the dendritic structure. These multistep energy
structures can be explained by theJ- and H-aggregate-type
interactions16,17 involved in the dendritic (fractal antenna)
structure and are known to be important for the exciton
migration from the periphery to the core.13

Because the damping effects in one-exciton states are found
to be essential for the exciton migration from the periphery to
the core of dendrimer,15 we consider the damping terms in eq
2. The factorγil in eq 5 is determined by an energy-dependent
relation: γil ) f(Ei

agg - El
agg) (f ) 0.1, i (>l) is a one-exciton

state). This indicates that the population of higher energy states
decreases faster and damps into the lower energy states. The
external single-mode laser with 100 MW/cm2 has a frequency
(3000 cm-1), which is sufficiently off-resonant with respect to
one-exciton states. It is noted from the perturbational formula
(eq 15) that the off-resonantR can be qualitatively well
described in the one-exciton model. The division number of
the one optical cycle of the external field used in the numerical
calculation is 80, and theR is calculated by using 100 optical
cycles after an initial nonstationary time evolution (2000 cycles).
In general, the feature of off-resonantR can be explained by
the following perturbational formula:

Namely, all of the virtual excitation contributions are positive
and are more enhanced in the case of smaller transition energies
and larger magnitudes of the transition dipole|µ1l|.

In the present case (off-resonantR of systems with weak
intermolecular interactions), the totalR value is found to almost
linearly enhance with the increase in the number of monomers.
This feature indicates that the magnitude of off-resonantR for
the present systems is primarily determined by the number of
monomers and their relative configurations with respect to the
applied field. Therefore, we confine our attention to the
intermolecular-interaction and damping effects onR. The R
value including only intermolecular-interaction effects is referred
to asRint; theR value including both intermolecular interaction
and damping effects is referred to asRint+damp. The R value
including neither effects is referred to asRnon. The monomer
value ofRnon is 89.97 au. Figure 3 parts a and b show the size
dependences of intermolecular-interaction (Rint - Rnon) and
damping (Rint+damp- Rint) effects onR per unit dipole for these
aggregate models, respectively. It is found that the intermolecular-
interaction and damping effects provide positive and negative
contributions toR, respectively (see the legend of Figure 3). In
accordance with the fitting procedure in previous studies,18,19

∆R () Rint - Rnon or Rint+damp - Rint) per unit dipole is fitted
by the least squares to

where the extrapolated values for infiniteN are (|∆R|/N)Nf∞ )

Figure 2. Calculated one-exciton state energiesEl1
agg [cm-1] and the

magnitude of transition momentsµl1
agg [D] between the ground (1) and

one-exciton (l) states of the dendritic molecular aggregates shown in
Figure 1.

Figure 3. Size-dependency of intermolecular-interaction effects (log-
(|Rint - Rnon|/(N × 1 au)) vs 1/N) (a) and the damping effects (log-
(|Rint+damp - Rint|/(N × 1 au)) vs 1/N) (b). N represents the number of
monomers. It is noted thatRint - Rnon values are positive, whereas
Rint+damp - Rint values are negative in sign. (Rint - Rnon)/N values for
D10, D25, D58, and D127 are 1.100, 2.504, 3.546, and 4.418 au,
respectively, whereas (Rint+damp - Rint)/N values for D10, D25, D58,
and D127 are-0.066 67,-1.742,-11.62, and-41.93 au, respectively.

log(|∆R|
N ) ) p + q

N
+ r

N2
(16)

R(-ω;ω) ) 2∑
l)2

(µ1l)
2

El1

(El1
2 - (pω)2)

(15)
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10p. The fitting parametersp, q, andr are listed in Table 1. In
this plot, we use the data from D10 to D127, whereas the data
for D4 are not used because D4 possesses only one generation
and exhibits a distinct feature of structure compared with other
dendritic aggregates composed of multigenerations. It is noted
that the present planar dendritic aggregates with Cayley-tree
structures over D127 hardly seem to exist because of the steric
hindrance of dendron parts in the periphery region. Actually,
the Cayley-tree-type planar dendrimers over D127 have not been
synthesized.9 Even though such extended systems exist, they
will take nonplanar structures, which do not conform to the
models considered in this study. The nonlinear size-dependency
of (Rint - Rnon)/N suggests that the intermolecular-interaction
effects on transition energies and moments nonlinearly depend
on the number of monomers in linear leg regions parallel to
the polarization vector of the applied field. Because it is well-
known that theJ-aggregate-type interaction decreases the dipole-
allowed excitation energies, the size dependence of the inter-
molecular-interaction effect onR is predicted to be determined
by the number ofJ-aggregate-type interaction pairs involved
in linear leg regions in each model. For large-size aggregates,

the damping effects (negative contribution) are found to
overcome the intermolecular-interaction effects (positive con-
tribution), so that the totalR values for large-size dendritic
aggregates tend to slightly decrease.

The spatial one-exciton contributions to the off-resonantR
for D10 (nonfractal structure) and D58 (fractal structure) are
shown in Figure 4. All of the contributions are found to be
positive in sign, as is expected from eq 15. In agreement with
our prediction, the dominant contributions for both systems are
shown to be distributed in linear leg regions parallel to the
polarization vector of the applied field. This feature can be
understood by the fact that these linear leg regions possess a
dominant interaction with the applied field because their dipole
units are parallel to the polarization vector of applied field.

3.2. Effects of Intermolecular Interaction and Damping
on the Spatial Contribution of One-Exciton Generation to
r. First, we only focus on the effects of intermolecular
interaction onR, so that the damping terms are omitted. Figure
5. parts D10-a and D58-a show the effects of the intermolecular
interaction on the one-exciton generation contributions toR.
For both systems, the totalR values are found to be slightly
enhanced by the intermolecular interaction compared to that of
Rnon, respectively. The dominantly enhanced contributions of
one-exciton generation are shown to be located in the linear
leg regions parallel to the polarization vector of the applied field.
Although the contributions in these linear leg regions of both
systems are found to be different among generations, D10 shows

Figure 4. CalculatedR () Rxx) [a.u.] and its partitionedR|1,1,...,1〉-b

(spatial contribution) for the dendritic aggregates D10 and D58 (Figure
1) involving intermolecular interactions and damping effects. The size
of the circle at each dipole site represents the magnitude ofR|1,1,...,1〉-b.
The scale factors of these systems are different from each other. The
symbolb indicates a one-exciton aggregate basis (see eq 14). TheseR
values are the same as those forRint+damp in section 3.1.

TABLE 1: Fitting Parameters p, q, and r in Equation 16 for
the Intermolecular-Interaction ( rint - rnon) and Damping
(rint+damp - rint) Effects in Dendritic Aggregates from D10
to D127 Shown in Figure 1

p q r

intermolecular-interaction effect 0.7056 -8.412 21.95
damping effect 1.988 -51.22 205.0

Figure 5. Differences shown iby D10-a and D58-a:Rint - Rnon (see
section 3.1 for the notation ofR) of D10 and D58 (Figure 1),
respectively. Damping effects in one-exciton states are omitted in these
cases. Differences shown by D10-b and D58-b:Rint+damp- Rint of D10
and D58, respectively (Figure 1). Total effects shown by D10-c and
D58-c: Rint+damp - Rnon of D10 and D58, respectively. It is noted that
D10 takes a nonfractal structure, whereas D58 does a fractal structure.
The white and black circles represent positive and negative contribu-
tions, respectively, and the size of the circle indicates the magnitude
of the contribution. The scale factors of circles for these systems are
different from each other.
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much smaller variation than D58 (for example, compare regions
a ande(e′) in D10 with regionsa, e(e′), andf(f′) in D58). This
feature relates to the fact that D10 possesses a smaller number
of monomers in its linear legs (only one monomer per each
liner leg) compared to D58. For D58, the contributions in inner
leg regions are distinctly larger than those in outer leg regions:
a > e(e′) > f(f′) and h(h′) > g(g′) > i(i′), j (j ′), and k(k′).
Namely, the inner linear leg regions for D58 primarily contribute
to lower one-exciton energy states because of their larger number
of J-aggregate-type pairs as compared to outer leg regions. Such
differences in the spatial contributions toR between D10 and
D58 reflect their architectures, i.e., fractal and nonfractal
structures, because the number of monomers in leg regions for
the fractal architecture increases as going from the periphery
to the core.

Next, we consider the damping effects in one-exciton states
on R. In contrast to the intermolecular-interaction effects, the
contributions (negative in sign) occur significantly both in inner
and in outer linear leg regions. It is also found that the damping
effects in a large-size aggregate (D58) remarkably reduce the
Rint+damp compared to those in a small-size aggregate (D10).
From our introducing way of damping terms, these reductions
are presumed to originate in the decoherence process, i.e., the
decrease in the off-diagonal density matrixes, because of the
phase damping effects (see eqs 7 and 9).

Although the total effects (intermolecular-interaction and
damping effects) for D10 are found to slightly enhanceR, those
for D58 are found to reduceR (see Figure 5 parts D10-c and
D58-c). This feature implies that the damping effects (negative
contribution) are more significant for larger-size dendritic
aggregates because larger-size aggregates possess larger mul-
tistep energy widths which lead to larger damping factors.

4. Concluding Remarks

In this study, we investigated the off-resonantR for several
sizes of model dendritic aggregates (D4, D10, D25, D58, and
D127) with planar structures and elucidated the features of
spatial contributions of one-exciton generation toR for fractal
and nonfractal dendritic aggregate systems. It was found that
the size dependence of intermolecular-interaction enhancement
of R/N is nonlinear and is closely related to the number of
J-aggregate-type-interaction pairs involved in each system. The
intermolecular interaction and the damping in one-exciton states
were shown to provide slight effects with mutually opposite
sign onR: the former enhances theR, whereas the latter reduces
that. TheR values of the present fractal dendritic systems were
found to be dominantly contributed to by the one-exciton
generation distributed in linear leg regions, especially the central
leg region, parallel to the polarization vector of applied field,
whereas for nonfractal dendritic systems, the dominant inter-
molecular-interaction contribution in each generation showed
slight differences among generations. This feature can be
understood by the fact that the fractal structure provides a larger
number ofJ-aggregate-type-interaction pairs, which leads to the
decrease in the one-exciton energies, as going from the periphery
to the core in contrast to the nonfractal structure. In contrast to
these intermolecular-interaction effects, the damping effects were
shown to provide mutually similar contributions both in inner
and in outer linear leg regions for these systems. The reduction
of R by the damping effects is presumed to be caused by the

phase damping effects. In the present cases, the reduction ofR
was more significantly observed in larger-size aggregates than
in smaller-size aggregates.

On the analogy of the present results, the fractal supramo-
lecular systems with electronically well decoupled generations
are predicted to possess an attracting feature: the contribution
of one-exciton generation toR varies for each generation from
the periphery to the core. This feature is expected to be observed
as a more remarkable and more complicated phenomena in the
(near)resonant high-order response processes, e.g., hyperpolar-
ization under intense laser field. The efficiency of the calculation
and analysis approach presented in this study will be displayed
better in the case of treating such phenomena.

Finally, we make some suggestions on the experimental
realization of these attracting features. The measurements ofR
for the several aggregates (with different intermolecular interac-
tions) arranged artificially on the surface may be possible. Also,
as mentioned above, the size dependences ofR and hyper-
polarizabilities for several sizes of supramolecular systems
(dendrimers) are expected to more remarkably reflect the effects
of the fractal structure. For example, the size dependences ofR
and hyperpolarizabilities for three types of phenylacetylene
oligomers, (para-connencted, nonfractal-structuredmeta-con-
nected, and fractal-structuredmeta-connected (which is actually
involved in phenylacetylene dendrimers) oligomers) are ex-
pected to be remarkably different from each other. The
theoretical investigations of these species are now in progress
in our laboratory.
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